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ABSTRACT: Gas generation in lithium-ion batteries is one of the critical
issues limiting their safety performance and lifetime. In this work, a set of 900
mAh pouch cells were applied to systematically compare the composition of
gases generated from a serial of carbonate-based composite electrolytes, using
a self-designed gas analyzing system. Among electrolytes used in this work, the
composite γ-butyrolactone/ethyl methyl carbonate (GBL/EMC) exhibited
remarkably less gassing because of the electrochemical stability of the GBL,
which makes it a promising electrolyte for battery with advanced safety and
lifetime.
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Currently, lithium-ion batteries (LIBs) have been widely
used in portable electronics and power tools due to its

high energy density.1−10 Despite the major advances over the
last few decades, gas generation during the formation,
operation, and storage of the LIBs remains a big challenge,
because of the concomitant volume swelling, performance
failure, and safety concerns.11−14 Gas generation in the
formation step of the batteries is mainly originated from the
electrochemical decomposition of electrolyte solvents during
the solid-electrolyte interphase (SEI) layer formation,15−21

which requires an extra degassing process, especially for the
“soft” pouch cells, and thus increases the production cost and
potentially degrades the consistency of cell groups. Com-
paratively, gas releasing during cycling and storage of well-
formed cells is generally less severe if no abuse condition such
as overcharging or overheating is applied. That is because the
as-formed SEI layer is able to reduce direct contact between the
electrode and the electrolytes.
Because of their scaled-up, automotive fabrication process

and the sufficient amount of active materials and electrolyte, the
pouch cells designed for practical application are able to
provide more reliable insights of the gassing process compared
to lab-scale coin cells. In this work, a set of 900 mAh
commercial pouch cells were assembled to analyze the gas
composition at a series of state of charge (SOC) in the first
formation cycle of the cells. A set of different carbonate
composite electrolytes were applied to compare the gaseous
products generated by decomposition of different solvents. It

was found that low-molecular-weight hydrocarbons such as
CH4, C2H4, and C2H6, and carbon oxides such as CO and CO2

were the main gaseous during the initial charging of the battery.
Among electrolytes used in this work, the composite γ-
butyrolactone/ethyl methyl carbonate (GBL/EMC) exhibited
remarkably less gassing due to the electrochemical stability of
the GBL, which makes it a promising electrolyte for battery
with advanced safety and lifetime.
Using the typical commercial LIB configuration, the pouch

cells for gas analysis were assembled with LiCoO2 as the
cathode material and the nature graphite as the anode material.
The electrolytes are consisted of 1 M LiPF6 dissolved in binary
carbonate solvents including EC (ethylene carbonate), FEC
(fluoroethylene carbonate), GBL (γ-butyrolactone), DMC
(dimethyl-carbonate), EMC (ethyl methyl carbonate), and
DEC (diethyl carbonate), with their detailed composition and
volume ratio listed in Table S1. The cells were first placed in a
sealed gas analysis system as shown in the TOC graphic, and
then charged at 0.5C to reach a series of different SOC, i.e., 5,
10, 20, 30, 50, and 100%. The gas inside the cell was released by
nailing the cells at the same spot, and its composition was
analyzed by a gas chromatography analysis and thermal
conductivity detector (GC-TCD). The gas analysis system is
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shown in Scheme 1, and more experimental details can be
found in the Supporting Information.

The gas composition of cells with EC-containing electrolytes
(No. 1, 2, and 3) are plotted in Figure 1. It is notable that C2H4
and CO are the major gas products from all of the EC-
containing electrolytes. The reductive decomposition reactions
of EC generating C2H4 and CO can be expressed by eqs 1 and
2 in Scheme 2.
In the cell with EC/EMC solvent (Figure 1a), the volumes of

the main gas products decrease with higher SOC, indicating
that the two gases may be dissolved or reacted with other
component in the batteries during the process of charging.22

Then EMC is replaced by DMC, the volume of CO and C2H4
increase in the beginning when SOC is lower than 10%,
indicating a relatively slower decomposition reaction. On the

other hand, the volumes of the minority gases such as CH4,
C2H6, and CO2 increase with higher SOC, showing that these
gases accumulate gradually in the cell, whereas the electro-
chemical reactions of the linear carbonates (such as the one
shown in eq 3 in Scheme 2) undergoing. Furthermore, it is
interesting that in Figure 1, there are CO2 generated from EMC
and DEC, but not DMC. Therefore, the CO2 is likely
originated from the existence of the ethyl group.

Scheme 1. Gas Analysis System for Lithium Ion Batteries

Figure 1. Compositions of gas generated at different SOC in the first charge of cells using EC-containing electrolytes. (a) EC:EMC = 1:2, (b)
EC:DMC = 1:2, (c) EC:DEC = 1:2.

Scheme 2

ACS Applied Materials & Interfaces Letter

DOI: 10.1021/acsami.5b08399
ACS Appl. Mater. Interfaces 2015, 7, 22751−22755

22752

http://pubs.acs.org/doi/suppl/10.1021/acsami.5b08399/suppl_file/am5b08399_si_001.pdf
http://dx.doi.org/10.1021/acsami.5b08399


To further understand the generation of the main gas
composition from the EC-containing electrolytes, we used GBL
and FEC instead of EC, and their gas generations are compared

in Figure 2. The content of C2H4 dropped significantly in the
absence of EC, further confirming that C2H4 is the mainly
originated from the decomposition of EC. The FEC:EMC

Figure 2. Compositions of gas generated at different SOC in the first charge of cells using EMC-containing electrolytes. (a) EC:EMC = 1:2, (b)
FEC: EMC = 1:2, (c) GBL:EMC = 1:2.

Figure 3. Energy profile at 298.15 K of the reductive dissociation process of (a) EC and (b) GBL. The gray, white, red, and purple balls stand for C,
H, O, and Li atoms, respectively.
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electrolyte still released about 250 μL of CO because of the
similarity in the ring carbonate structure of EC and FEC.
Meanwhile, moderate amounts of CO2 can be detected, and the
reaction path can be expressed as eq 4 in Scheme 2.
The structure of FEC is very similar to that of EC. The only

difference is a fluoride in FEC replacing for the hydrogen in EC
molecule. When Li+ combines with FEC, the C−F bond is
open and the electron transfer goes on. The radical anion
intermediate is unstable and tends to terminate by dimerization.
The dotted-line parts in the dimer have strong ion properties
that are similar to those of carbonate and can be further
decomposed to CO2.
As shown in Figure 2c, when the EC is replaced by GBL, the

electrolyte exhibits a much lower volume of CO and C2H4. To
elucidate the remarkably reduced gassing in the GBL electrolyte
compared to the EC electrolyte, we compared the reductive
decompositions of EC and GBL by means of density functional
theory calculation. As shown in Figure 3a, EC initially turns
into the ion pair intermediate product (2), when a Li+ tends to
coordinate with the most electronegative O atom. The
interaction energy, defined as the energy difference between
the Li+-EC and the total of Li+ and the EC molecular, is about
−7.272H, indicating a strong interaction between Li+ and EC.
Then an electron transfers from anode to further stabilize the
intermediate product (2) to form the intermediate product (3).
After that, about 0.0075H energy barrier exits to break the C−
O bond and open the ring to from intermediate products (4).
With the presence of another Li+ and electron, the intermediate
product (4) is eventually dissociated in to LiOCH2OLi and
CO. Compared to EC, the GBL exhibits similar reaction path
and energetic data in the reaction with the first Li+ and electron
to form the open-circuit intermediate (10). However, an energy
barrier of about 0.0097H exits to break the C−C in
intermediate (10) for further dissociation, because of the lack
of anther C−O single bond to host the second Li+ ion to push
the relocation of electrons. Therefore, the energy barrier for the
decomposition of Li+(GBL) intermediate inhibits the gas
generation from GBL: EMC electrolyte.
In summary, the mechanism of gas generation in the first

charging process of lithium-ion batteries was investigated by
experimental and theoretical analysis. The large amounts of
C2H4 and CO generated from EC decomposition are the main
gas product in the EC-containing electrolytes. The GBL/bEMC
electrolyte exhibits much lower volume of gases compared to
the EC or FEC-containing electrolytes, which was explained by
DFT calculation. Therefore, it is promising for GBL/EMC
solvent, which can efficiently suppress the generation of low-
molecular-weight hydrocarbons and carbon oxides, to enhance
the safety and electrochemical performance of the lithium-ion
batteries.
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